October 19th, 2017

In September, I attended two conferences; each of which included a half-day, fuel microbiology session. Although most of the folks presenting fuel microbiology papers were onboard for both conferences, the information overlap was minor. My overall take home lesson is that when it comes to fuel microbiology, we are all still like the five blind men attempting to describe an elephant (if you are not familiar with this ancient, Indian parable, I invite you to look it up).

Although it has…


October 19th, 2017

Thirteen years after Metalworking Fluids, 2nd Ed. was published, the third edition is now available. Metalworking Fluids, 3rd Ed. Jerry Byers, Ed. has just been published (ISBN, Hardbound: 978-1-4987-2222-3; E-book: 978-1-14987-2223-0) and is available from STLE, CRC Press, or Taylor & Francis.

MWF 3rd. Ed. promises to become the new MWF bible. All of its chapters reflect either substantial updates or all new material. I recommend this new volume most strongly to all metalworking…


August 22nd, 2017

Let’s pick up with: “If no method provides a perfect measurement of microbial contamination, which one should I use?”
Currently, the primary microbiological test that I use for testing fuels, fuel-associated water and fuel system components is ASTM D7687 Test Method for Measurement of Cellular Adenosine Triphosphate in Fuel and Fuel-associated Water With Sample Concentration by Filtration. The ASTM method is based on a test kit manufactured by LuminUltra Technologies, Ltd.; with whom I…


July 25th, 2017

In Part 13, I discussed culture testing. One of the points I made was that any given culture test (of which there are >5,000) is unlikely to detect >1 % of all of the microbes present. Before moving on to discuss methods that detect more of the microbes present – in terms of percent detection of each type of microbe and the fraction of the different microbes present that are detectable – I will invoke one of Donald Rumsfeld’s most famous quotes:

“There are known knowns. These…


July 6th, 2017

Since November, this series has progressed through fuel system sampling, sample handling and non-microbiological tests used to detect biodeterioration. This post, and the three to follow, will cover microbiological testing.

Let’s take another look at the figure (fig 1) that accompanied Part 3 (December 2016):

Fig 1. Ability of different microbiological test method to detect all microbes present in a microbiome.

The largest circle represents the total microbiome – all the microbes…



  • Consulting Services
  • Condition Monitoring
  • Microbial Audits
  • Training and Education
  • Biocide Market Opportunity Analysis
  • Antimicrobial Pesticide Selection